-2y^2+8y+16=0

Simple and best practice solution for -2y^2+8y+16=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2y^2+8y+16=0 equation:



-2y^2+8y+16=0
a = -2; b = 8; c = +16;
Δ = b2-4ac
Δ = 82-4·(-2)·16
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{3}}{2*-2}=\frac{-8-8\sqrt{3}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{3}}{2*-2}=\frac{-8+8\sqrt{3}}{-4} $

See similar equations:

| 2x4-8x2-6=0 | | 3x+2/5=-6 | | M=(0.56x)-0.25 | | (-2/3)y+4=6 | | 2(x+11)=-5(10-2x) | | 10t+30+30=180 | | 25=100-r | | 2x-2+1x+1=12 | | 2.5y+5=10 | | 4x+21=11x-59 | | -7t=-4t+21 | | 2.5x–4=21 | | 36+2v+7v=180 | | 4u+91+49=180 | | 8u=+12u | | 51=2y+15 | | 6x-12=7x+8 | | 12t+43+65=180 | | 5x+17+3x-2=2x+57 | | 2(x-3)=-3x-1 | | 30-(8+7)=3k | | 10y+80+15y=180 | | Z=10-3i | | 10y+80°+15y=180 | | 4c-4+8c+8=3/2 | | 1/9(2x+16)=1/3(2x-4) | | 2/5x-2=4=3x-3/4 | | 4t+73+43=180 | | 5*(3x-4)=12x+6 | | 3y+75+63=180 | | 87=3y-3 | | 5(3x-4)=12x+6 |

Equations solver categories